Homework 6, due 10/7

1. Compute the integral

$$
\int_{0}^{2 \pi} \frac{d \theta}{3-2 \cos \theta}
$$

2. Compute the integral

$$
\int_{-\infty}^{\infty} \frac{e^{x / 2}}{\cosh x} d x
$$

Hint: consider the integral around a rectangle with vertices $\pm L, \pm L+i \pi$ as $L \rightarrow \infty$.
3. (a) Find the poles and corresponding residues of the meromorphic function $f(z)=\csc (\pi z)$.
(b) Show that

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}=\frac{\pi^{2}}{12}
$$

4. Let $H=\{z: \operatorname{Im}(z)>0\}$ denote the upper half plane. Find all biholomorphisms $f: H \rightarrow H$.
5. Let $f: D \rightarrow D$ be holomorphic on the unit disk D, such that $f(0)=0$.
(a) Prove that

$$
|f(z)+f(-z)| \leq 2|z|^{2}
$$

for all $z \in D$.
(b) Suppose that $\left|f\left(z_{0}\right)+f\left(-z_{0}\right)\right|=2\left|z_{0}\right|^{2}$ for some $z_{0} \neq 0$. Show that then $f(z)=e^{i \theta} z^{2}$ for some constant $\theta \in \mathbf{R}$, for all $z \in D$.

